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CORRELATION FUNCTION OF THE STRESS FIELD IN AN ELASTIC MEDIUM
WITH POINT DEFECTS’

S.K. KANAUN

A two-point correlation function is constructed for the field of elastic
stresses in a medium containing a random set of iscolated inhomogeneities

in the form of inclusions with other elastic properties or cracks. The main
scheme of the construction of the correlation functions of elastic fields
in a medium with isolated inhomogeneous is elucidated in /1/. Here this
scheme is developed for the case of an elastic medium containing a set of
point defects by which finite inclusions are modelled in the interest of
simplification. The case of a set of point defects on one line is investi-
gated in detail. Results are presented for a numerical solution of this
problem for a specific statistical model of a one~dimensional random set
of defects.

Two-point correlation functions of elastic fields contain valuable information about the
microstress and strain distribution in stochastically inhomogeneous materials. This informa-
tion is needed to describe important structurally-sensitive processes that occur during strain,
for instance, fracture and transfer into the plastic state. The problem of constructing the
correlation functions mentioned hardly allows of exact solution in the general case. However,
visible results are obtained successfully in a number of important special cases by using
different simplifying assumptions. In the case of small fluctuations of the elastic moduli of
a medium, the statistical second moments of the elastic fields can be found by confining
oneself to the first terms of the perturbation-theory series for the desired functions (the
Born approximation) /2,3/. If the properties of the medium are described by Gaussian random
fields, then certain infinite subsequences of terms of the series mentioned are summed succes-
sfully by using the methods described in /4/, for example. Here, the effective~field method,
which, in principle, enables strong elastic moduli fluctuations and significant concentrations
of inclusions to be considered, is used to construct the two-point correlation functions.

1. A homogeneous elastic medium with point defects. suppose a set of isclated
inhomogeneities of the inclusion or crack type are contained in an infinite homogeneous elastic
medium with moduli ¢s. The solution of the problem of the elastic equilibrium of such a
medium in an external stress field ¢¢ is examined in an approximation for which the inhomogene-
ities are modelled by point defects, /5/. Each i-th inhomogeneity is here replaced by a
dislocation moment with singular density m' (z) concentrated at the centre of gravity of the
inhomogeneities §; (here and below, the tensor subscripts are denoted by Greek letters):

kg (%) = P8z —§), i=1,2,3,...

(6 (x) is the three-dimensional delta function, &z (¥, %, &) is a point of the medium, and 4,
is the stress field in which the i-th defect is located. The constant tensor P,'depends on
the shape, size, and elastic properties of the i-th inclusion. The problem of a single in~
clusion in a homogeneous external stress field must be solved in order to comstruct this
tensor. The form of the tensor Py is presented in /5/ in the case of ellipscidal inclusions.
The expressions for the tenscors Py’ are henceforth assumed to be known.

Let X denote the discrete set of points § at which the peint defects are located, and
let}({x}be a generalized function concentrated in this set

X(x)=§6<z—&) (1.1)

Then the stess ¢ (z) and strain & (z) fields in a medium with defects can be represented in
the following form /5/ (&g = ¢y"'0,):

098 (z) = 0% (z) + { 5% (2 — 2') Poayp (') 3% (2') X (z') da’ (1.2)

20 (2) = taup () + § Kapiy (¢ — 2) 68" Porry (¢) 7% (@) X (') d’ (1.3)
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Here Py {z)and § {z) are smooth functions which take the values Py and §; at the points o = .,
t==1,2,8... The kernels § () and K () of the integral operators S and K in these relationships
are expressed in terms of the second derivatives of Green's function for a homogensous medium

€. The properties of the operators S and K required below are presented in /1,5/.

The function @(z), given on the set X and goverming the local fields in which the in-

dividual defects are located, satisfies the equation /5/

F@)=00@) + | S &6 —2) Po 2T (@) X (z;2) de, z= X (1.4)

The function X (zp @) is defined for z,& X by the equality

X (2 z)wgkﬁ(z-i;), if zo=§, .3

If the solution® {z}of (1.4) is known, then the stress and strain in a medium with point
defects are defined unicquely by relations {1.2) and (1.3). Therefore,? {z)is the main unknown
of the problem of the interaction of point defects in an elastic medium.

2. A random set of point defects. Mow let the point defects form a random set
homogeneous in space., We shall later assume the external stress fleld g, applied to the medium
to be constant. Here &{z), 6{(7), and 2 {s) will be homogeneous random fields. We consider
the problem of constructing the statistical moments of these random fields and we start with
a function @ () given in a discrete set X. The correlation functions of the fields ¢ {z)and & (z)
can be expressed in terms of the main statistical moments of the functions T {z}(see Sect.3).

We introduce the following notation

(G98 (2) [ 2D == PR, (T (20) T (2) | 2n; 22) == T80 2y — o)

Here (-{z> is the mean over the ensemble of a random set of point defects under the
condition ze X; (| z;; 2.y is this mean under the condition &, @, €& X, 2, v 2,. In general,
(ol @y, Tay o+~ Tnd Tnazs - - o5 T denotes the mean under the conditions 2y, ..., #, = X, while the
point with the dot separates variables that cannot take identical wvalues. For & ¥ only
two different defects can evidently be at the points z, and x,. Hence, the function §(x)
charagterizes the pairwise interaction in a random set of point defects.

We obtain the expression for the mean & by taking the average of both sides of (1.4)
under the condition ze X

Ty + § § (¢~ 2) (P () () X (7 2) |2 d’ (2.1)

To calaulate the mean 6° {z) we multiply both sides of {1.4) by & (z,) and we average the
result under the conditions & =2, L, & X

(2 — 22) = 0D (21 — 23) + | 8 (31— 2) (Po (#) ()3 () X (235 %) | 21; 32 o (2.2)

Here, by virtue of (l.4] the mean
B {2y — g} = T ) L2y 2D (2.3
is represented in the form

@y — ) == 0 XS {zy — &) {Po (&) T2} X (o; &) | 215 ) d2’ (2.4)

In addition to the two-point moment &7 (2, — Z,) we introduce the mean of the tensor
product of the field T by itself at the point 1, &X assuming that there was a defect at the

int T, F= To)
point Z (m ¥ % D@y~ za) =G (@) T (2] 2 ) (2.5

The limits of the functicns D {z)and @ (z}are denoted, respectively, by I, and @, as
{z ] —~co . Since the dependence on z, in (2.5) and on z; in {2.3) vanishes for large |2 — %, |,
the following eguations hold:

Do se= B (@) =T, Doy == (F (@) F ()| 2) (2.6)

We obtain the expression for the function D {z)like the preceding one by multlp}»y%ng both
sides of (1.4) by §(z) and taking the average of the result under the appropriate conditions

Dz —z) =0 (& — @) +§ 5 (z—2) (Po(2)F ()T (@) X (1 @) |75 1) da’ (2.7
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We now consider the problem of constructing a closed system of equations for the functions
@ (x), D () and @ (z). Here we start from the following hypothesis about the properties of
the random field G (x): the value of the field @ at the point 2 & X is statistically indep-
endent of the properties of the defect at this point (hypothesis H,). This is the fundamental
hypothesis in the effective-field method. Its physical meaning is discussed in /1/.

Using this hypothesis, the mean under the integral sign in (2.1) can be represented in

the form
Po(zYB(2') X (1 22> = Py (&) X =z 2Had> B 2Nz, 2

On substituting this relation into (2.1), the gquantity &' is expressed in terms of the
mean (O (z’) |2',2>. A closed eguation for G'can be cbtained by introducing an additional
assunmption about the structure of the conditional mean

Gz =G@E) ) =7 {2.8)

This approximation is called "quasi-crystalline" /6/.
The solution of the equation obtained here for & is examined in /5/.
Let Xaune be a set of Xfrom which points incident in z, or in xz,are removed. If

X (3, 225 2) = .;.: 8(z—§)

§i€ X

then because of the definition (1.5) of the function X (z;;z'), the following equation holds:

X(zg;2) =X {5, 255 ) + 0 (2 —z), e X (2.9
Let us examine the conditional mean under the integral in (2.2). Taking into account
the preceding relationship, we have
Py {z') X (23 2) T () T (2) | 25 3> = (2.10)

P (&) T (2) T (23) X (31, Ty 27} {2 2> +
O (& — z4) <Py (23) T (22) T (25) | 235 20)

Using now hypothesis H, and an assumption of the type (2.8)
Tz T ) |2, 215 29> = TH2) T (@) | 25250 = G2 (' — ) (2.11)

the expresions for each of the means on the right side of (2.10) can be represented in the
form

Po (') X (21, 203 2') T (2) T (25) | 235 3> = P (X (25, 23 T') | 235 2D T (2" — 29) (2.12)
Po(z)T(2) T (z) 13320 = PD (3, — 1), P =Pz} |2 (2.13)
It is assumed here that the random functions P, (#) and X (2) are statistically independent.

Substituting the preceding expressions into (2.10), and the result into (2.2), we obtain
the final expression for G* (z):

& (21 — 22) = o (21 = 23) + 5 (21 — 22} PD (33— 1) + S S —2) P2 —z) F (2, 21, ) d2' (2.14)

F(z', a2y, 2) = (X (25, 3 &) | 205 20> (2.15)

Using hypothesis H, and an assumption analogous to (2.8) and (2.11), the mean under the
integral in {(2.4) can be represented in the form

Po(2)T (@) X (i ) L 2yi 2) = PO (2’ — 23) F2', 23, 29) + 8 (2’ — z5) PD (2, — )
Substituting this result into (2.4), we have

@ (21— 22) = 0o + § (@1 — 22) PO @2 ~ 71) + (S (&1 — 2) PO (&' — 2) F (2", 21, 22) d’ (2.16)
Transforming the right side of (2.7) in an analogous manner, we can obtain
D (21 — 23} = 0@ (21 — 22) + S {21 — z5) PC? (21 — 79) +SS(:¢1-.7:'}P33(2:’ —z) F &, 21, 29ydz” (2.17)
Equations (2.14), (2.16) and (2.17) form a closed system in the three desired functions
T¢ (x), ® (z) and D {(r). The specific structure of therandom set X cccurs in these equations in

terms of the function 'F {z', 3;, 7;) defined by relation {2.15). We consider the mean F {2, z,, x4}
in greater detail. )
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o 3.__Certai{1 conditional means of the random functions X (x) and X (x;;%). we
initially consider means of the form <X (z;; ) | 2,> and <X (z,; 2) | ay; 7). By definition of
the conditional means, we have /7/

(X (@ &) | ;) = X {x 2) X (m)y -
i 1 — Xy (3.1
(X (931; :c) le; x’> o (A (z1; T) & (1 29) X (T1)) (3.2)

X (21 29} X (z1)>

The set Xis later assumed to be ergodic. The standard method that will be utilized to
construct means of the types (3.1) and (3.2) is to apply the ergodic property and then take
the average over the ensemble if necessary. For instance, starting from definition {(1.1) of
the function X {z),we have

. 1 1
<X(z)>=3_1.2~;-§ 8(z—8) do=—1 (3.3)

Here V is a domain in R® that occupies all space in the limit, v is its volume, and v,

1 = Py 1 e - = Py -
is the mean volume per slement of the set X {cne defect),

We evaluate the two-point moment of the function X (z). Using the ergodicity property,
we obtain

P ¢ |
(X@X@+ay=lim+{ Sa+n—tdE—t)dr =lim ¥ S@m—&+L) (3.4
T ¥ Tev e s Ty
45 5F Sit %
wWe introduce the random vector E., == k. — §, and let itgs distribution density he o /»r}

introg the random vector §;; Si i ang aistrl

We take the average of relation (3.4) once again over the ensemble of samples X. The above
mentioned mean of the separate components in the last sum has the form

B =& &S d(m—Bg®E==gi;(z), ivk]
B —LP=8@), i=j

It is here taken into account that §; = 0.
Extracting the components with {=j in (3.4), we obtain
1 1 >
X@X @+ z)) =8 +lim } (e 3.5)
(i3
where N is the number of points incident in the domain V.
Using this result and the obvicus eguality
Using this result and the cbviocus eguality

X@=X(@;2)+dz—a), =X
we find the expression for the mean in the numerator (3.1)

N
X (@ ) X @)y =lim— Y, g(c— ) (3.6)
(3957}

Let us consider the example of a random point set homogeneous in space. Let its ele-
ments g, be random vectors of the form &m=m + pn+r, wherem is the vector of the m-th node
of a regular lattice fixed in space, g, are independent random vectors with zero expectations
and the same characteristic function j(#, and r is a random vector distributed uniformly in
all space that is identical for all a.

We introduce the function

=1t e itk e kT
8@ =g sl(k)f( £) 6D gk (hoz = k%)

The functions gme(x) in {3.6) are related to the function ¢(s) for the point set under
consideration by the relationsghip
Zmn (2) = g (& — m + 7} (3.7

It follows from (3.6) and (3.3) that the expression for the mean (3.1) will here have
the form
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X (x3; :)|I;>=2.g(z—zl—-m)
m

where the:prime on the summation sign denotes that the component m =0 has been omitted.
We will now construct themean in the numerator (3.2). Using the ergodic property, we
have

X (@ n+ )X (o n+2) X (@)= lim%s 8(z1—§;) 8 (it z,-—E,)b(:l+z,—E,k)d:1= (3.8)
UV nr ey
Lim 4 8z —Ej;) 8 (2 —E,,)
| E}v 3924

0, ks=i)

We take the average of (3.8) once again over the ensemble of samples X. Since §; and Epn
for j #k are independent random vectors, their joint distribution function is gy () gxi ().
The means of the separate components of the last sum in (3.8) have the form

3 £.)6 £ _ gﬁ (zl)gn (2s) when 7%k
@=L Slm—typ = (2~ 25) 8, (=) when j =k
Hence, we obtain an expression forthe mean (3.2) from (3.6)=—(3.8) in the form
X (@ 2) {235 29> = F (2, 21, Z3) + 8 (z — 2p)
Equation (2.9) is used here. The function F is defined by relation (2.15) and in this
case has the form

Fanm=Qgm—n—m)" Dege—z—m D gzz—2zu—n (3.9)
m m Ny&mMm

where the prime on the summation sign denotes that the component m= 0 (n=0) has been omitted.

4. The one-dimensional case. We will consider the solution of the system of
equations (2.14), (2.16) and (2.17) using the example of the plane problem for a system of
point defects located on a line L. Let such defects model a system of rectilinear slits
(cracks) of random length 2l lying on L. The coordinates of the centres of the slits form a
homogeneous random set. We shall consider the exernal stress field to be a uniaxial tension
in the direction of the normal n to the line of slits and to have the form o,*F = g n%nb, where
Oy is a scalar.

We note that the state of any defect is determined uniquely in this case by the normal
field component T, where it follows from symmetry considerations that 0% (z) ng = & (z) n®, where
G (z) is a scalar.

In the case of an isotropic medium the tensors Papy and ngS*™M™ (z) n, take the form (x
is the coordinate along L)

Pogu= A2 2t nbumy, oS () my = s 080

where p is the shear modulus, v is Poisson's ratio of the medium, &8y is the Kronecker delta,
and z* is a generalized functions whose Fourier transform is —=n |k | /8/.

Multiplying (2.14), (2.16) and (2.18) onthe left and right by the normal n and taking
account of the preceding relationships, we arrive at the system of equations (b’= _17 (ls>)

P@) =00 (D) + D@+ 5 \ P, 0)6*(:’)—(;1’—;,;; (4.1)

D@) =0 (2) + 5T (2) + b

§
§

F(@, 2,00 @ —z) (zf“;,),

o

O (@) =00 + 5 O (@) + b? S F(z,z,0)0() -(%)—,

in the three scalar functions

2 (@) =G (@)5T(0) [0, D@D=C@T(@) |20, @@ =GEF@|z0 4.2)

If the defect density tends to zero, the integral terms vanish in these equations and

they describe the interaction of two isolated point inhomogeneities. Here the solution of
system (4.1) will have the form

F@=D@=[0@F ©@)=0giy (4.3)
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The expression for ®(z)is the normal component of the stress field in which each of the
two identical point defects separated by a distance x are stituated /5/. For z <& sclution
(4.3) has no physical meaning.

It is pointed out in /5/ that a point set in which the defects can turn out to be located
arbitrarily close to each other has no adequate analog in the case of defects of finite size.
Hence, to obtain physically incontrovertible results a constraint must be introduced on the
possibility of the defects coming together in a random set X. In the case under consideration,
for instance, the centres of the cracks which the point defects simulate should not approach
each other a distance less than the sum of half their lengths in order not to merge. This
circumstance can be taken into account partially if the following stochastic model of a one-
dimensicnal point set is used.

Let x, be the coordinate of the k-th defect, and let the differences 41 — 7, be indep-
endent random variables for all k, having the very same normal distribution

. (——-*""l")z] (4.4)

@)= Vim < exp [— 38

Here l; is the mean distance between defects, and 12 is the variance. If 1 -0 we obtain
a regular chain of defects. In order to limit the probability of the defects coming together
we assume T to be fairly small. 8ince the quantity having the distribution (4.4) with unit
probability in practice lies in the interval (I, — 31, I, + 31), we will assume x = 1/l </

By using the method utilized in Sect.3, it can be shown that the function F (2, 2y, 2y)
in the integrand of system (4.1) has a form analogous to (3.9) inthis case

F@ mm=(3 fe—a) S he—s) 3 e —a (4.5)

1 (x — klo)®
fele)= Vfi‘“xm‘e"p[“‘“m'"‘w] e

(the prime on the summation sign denotes that the component k = (0 has been omitted,and the
double prime denotes that the components n =0 and n= k have been omitted).
Substituting this expression for F into system (4.1), we seek its solution in the form
-, - 2 \2 z* 2
B @) =5 @ (m=p) D@=D1@(m) ‘.

D (2) = By (2) g

This form of the structure of the soclution is dictated by the following considerations.
The functions &%, D and @ characterigze pairwise interaction in a random set of point defects.
To a first approximation it can be considered that their form agrees with the corresponding
form for two isolated defects (4.3), while the presence of the surrounding point inhomogeneit-
ies is reduced to a change in the external field in which these two defects are situated.
Hence, we immediately arrive at representation (4.7).

Numerical computations show that the functions o (z), Dy (z) and @, (z) are approximated well
by constants whose values depend on the parameters p = 2b/l, and %. We denote these constants,
respectively, by Gx!(p,%), Dw(p,%) and @ (p, ), where it can be shown that T = (D)%

Cuxrves of M (p,%) and D (p, %) — @’ (p, x) are shown in Figs.l and 2. The values
p =1, 0.8, 0.8, 0.4 correspond to curves I—4.
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Since ©®_ = & by virtue of (2.6), the mean value of the field 3(s} is a maximum for a
fairly high relative variance of the distance between the defects (x= 0,3~ 04}, as is seen
from Fig.l. For x= 04 —0.2 the quantity ¥ already agrees with the value corresponding to
a regular chain of defects (x=0).

The difference D — (B, )¢ equals the variance of the field @ It follows from Fig.2
that the variance is a maximum for x=0.2-— 025 and is practically zero for x<{0.4, which
corresponds to a regular structure. For =x>>»%Y, the quantity D, — (®,) becomes negative.
This meaningless physical result is due to the increase in the probability of the defects
coming together at distances less than b for large =

As is seen from (4.7) for =2 (z), the correlation radius of the effective field & (z) is of
the order of the average linear dimension b of the defect and depends slightly on the relative
variance of the distance »* between defects.

5. Correlation Function of the Elastic Stress Field. To evaluate the second
moment of the stress fields in a medium with point defects, we multiply, as tensors, the
expression for o¢(z) taken at the difference points z; and 2. Taking the average of
the result over the ensemble of the set X, we obtain

(oo (1) oM (@) = 0Pl 4 § 5% (21 — 2') (Powrs (2)) T (2)) X (2)) dz'od® -+ (5.1)
ogP{ 5% (2, — 2') (Protup (£) 3% (@) X (2)3 d2' + § S%% (2 — 2') dz’ [ S (23 — 2) x
{Povpye (') Povsew (') T (2') 5% (") X () X (2)) dz”

Taking hypothesis H, into account, we represent the mean under the integrals in this
relationship in the form

{Py(z) T (") X (a')) = PB* (5.2}
(Po (@) Po (¢) 8 (2)5(z") X (@) X (&> =
X (" 2) X (z')y Po2 (g’ —2") P -—‘-fo— 8 (2’ — 2"} {(P* D

It is here taken into account that two different defects cannot be at the very same point.
Hence, for 2" =z’ we have
G@E)TEN 2, 2D =FE)E() 2D =Da
Substiuting (5.2) into (5.1) and taking into account that the operator § is annihilated
by constants /4/, we obtain

<0% (z) a4 (0)) = of Pap* é;n&%:‘ @) DI 4 vy § I (2 — 2)3ve0 (2) ¥ (') d’ (5.3)

T2 (2) = § S (2 — 2) ProueS™® (2) Pyupp 7', ¥ (z — 2') = (X (: 2')| 2

Therefore, the second statistical moment of the stress field is expressed in terms of
conditional moments of the function @ (z), which is the solution of the system {2.14), (2.16),
(2.17). The expression for the second moment of the strain field & (z) can be represented in
a form analogous to (5.3).

We now consider a cone-dimensional set of point defects. We calculate the second moment

t(z) of the normal component of the stress tensor when the point x is on the line of defects

1(2) = Opn (2) Ona (0)>,  Ouy (%) = na0®® (z) ng
The expression for the function ¢({z) in the form
HR) =00 + 4 1@ Du+lo { 72 —2) ()P (2) a2’ (5.4)

—rs

follows from relation (5.2}, where.the function 3 (x) has the form (4.7) and ¥ {z) takes the
following form

V)= 3 fi(@

keom—cx

for the model of a point set considered in Sect.4.
Here f, (z) is given by (4.6).
The function 7 (2) is the analog of IT(2z) in (5.3), and has the following form in this case:
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o

=it § byt

—ct

Hence, and from (5.4), we finally obtain
HD) =00 — 8 o [ 17 Dub (@) + V(@ (@) ]

A graph of the continucus part of the function ¢(z) — ¢* is shown in Pig.3. The pres-~
ence of a-singular component and a singularity at z=3 in the correlation function of the
random f£ield onn{f) on the line of defects is due to the replacement of the real cracks by
point defects. For a random field of. inhomogeneities of finite size the correlation function
should be smooth, bounded, and have minimal correlation radius of the order of the mean size
of the defect. As a random field of defects approaches a regular lattice, the correlation
radius of the stress field grows, as is also seen from Fig.3 (the physically meaningiess
domain =z« % is not shown in Fig.3).
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NON-AXISYMMETRIC BUCKLING AND POST-CRITICAL BEHAVIOUR OF
ELASTIC SPHERICAL SHELLS IN THE CASE OF A DOUBLE CRITICAL VALUE OF THE LOAD™

I..8. SRUBSHCHIK

The influence of small geometric imperfections of the shape of the middle
surface on the non-~axisymmetric buckling and initial post-critical behaviour
of shallow elastic spherical shells is investigated for a uniform external
pressure.

Cases are considered when the least bifurcation load of non-axisymmetric buckling p, of
the corresponding ideal shell /1/ is a double eigenvalue of the linearized problem, i.e.,
buckling in two eigen modes occurs. Surfaces of values of the upper critical load as a
function of imperfection functionals are constructed by using matrix pivotal condensation /1
~7/ and alignment /8—10/ methods for shells with a closed framed edge for A =696 and 9,
with a free clamped edge for 4 =8.045, and with a fixed hinge-~supported edge for A = 5655
and A — o0, where the parameter is A = 2[3(1 — )" (#/m*, and H is the height of the shell
rise, h is its thickness, and v is Poisson's ratio.
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