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CORRELATION FUNCTION OF THE STRESS FIELB IN AN ELASTIC MEDIUM 
WITH POINT DEFECTS* 

A two-point correlation function is constructed for the field of elastic 
stresses in a medium containing a random set of isolated inhomogeneities 
in the form of inclusions with other elastic properties or cracks. The main 
scheme of the construction of the correlation functions of elastic fields 
in a medium with isolated inhomogeneous is elucidated in /l/. Here this 
scheme is developed for the case of an elastic medium containing a set of 
point defects by which finite inclusions are modelled in the interest of 
simplification. The case of a set of point defects on one line is investi- 
gated in detail. Results are presented for a numerical solution of this 
problem for a specific statistical model of a one-dimensional random set 
of defects. 

TWO-point correlation functions of elastic fields contain valuable information about the 
microstress and strain distribution in stuohastically inhomogeneous materials. This informa- 
tion is needed to describe important structurally-sensitive processes #at occur during strain, 
fox instance, fracture and transfer into the plastic state. The problem of constructing the 
correlation functions mentioned hardly allows of exact solution in the general case. Bawevex, 
visible results are obtained successfully in a number of important special cases by using 
different simplifying assumptions. In the case of small fluctuations of the elasticmoduli of 
a medium, the statistical second moments of the elastic fields can be found by confining 
oneself to the first terms of the perturbation-theory series for the desired functions (the 
Boxn approximation) /2,3/. If the properties of the medium are described by Gaussian random 
Eidds, then certain infinite subsequences of terms of the series mentioned are summed succes- 
sfuLly by using the methods descxibed in /4/, for example. Mere, the effective-field method, 
which, in principle, enables strong elastic moduli fluctuations ana significant concentrations 
of inclusions to be considered, is used to construct the two-point correlation functions. 

1. A homogeneous eZastic mesliure with poirrt defects. suppose a set of isolated 
inhomogeneities of the inolusion or crack type are contained in an infinite homogeneouselastic 
medium with moduli co. The solution of the problem of the elastic equilibrium of such a 
medium in an external stress field aois examined in an approximation for which the inhomogene- 
ities are modelled by point defects, /S/. Each i-th inhcxwganeity is here replaced by a 
dislocation moment with singulax density mi(x) concentrated at the centre of gravity of the 

inhomogeneities & (here and below, the tensor subscripts are denoted by Greek letters): 

mhfi(x)= P&,,ZYS(Z -5i), i= 1, 2, 3, . . . 

(6 (z) is the three-dimensional delta function, s(q, x2, x6) is a point of the medium, and 6, 
is the stress field in which the i-th defect is located. The constant tensor &"depends on 
the shape, size, and elastic properties of the i-th inclusion. The problem of a single in- 
clusion in a homogeneous external stress field must be solved in order to construct this 
tensor. The form of the tensor PO' is presented in /5/ in the case of ellipsoidal inclusions. 
The expressions for the tensors PO' are henceforth assumed to be know. 

Let Xdenote the discrete set of points & at which the point defects are located, and 
letX(slbe a generalized function concentrated in this set 

X (.2)= gstz-a, (1.1) 

Then the stess u(r)and strain’s (z)fields in a medium with defects can be represented in 
the following form /5/ (BO =i cO%rO): 

u@(z)- C@(z) + SS""(z - 2') PaClYp(Y)aYp (z')X (2')dx' (1.2) 

eae(4 -Et&(;r) -t p@&b(('t --')c?%Q,,a(d)~~ (d)X(z') dz (1.3) 
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we now considertheproblem of constructing a closed system af equations for the functions 
L?%(x), I)(x) and CD(Z). Here we start from the following hypothesis about the properties of 
the random field C(z): the value of the field 5 at the Point se X is statistically indep- 
endent of the properties of the defect at this point (hypothesis u,). This is the fundamental 
by~otbesis in the effective-field method. Its physical meaning is discussed in il./_ 

Using this hypothesis,themean under the integral sign in (2.1) can be represented in 
the form 

(P, (2') 'Ti (I') X (s;z')\x> = <PO Ix') x (5; z')Iz> @ (x')is', Cc> 

On substituting this relation into i2.11, the quantity ii'is expressed in terms of the 

mean @ (I') 1 I’, z). A closed equation for 'ii'can be obtained by introducing an additional 
assumption~about the structure of the conditional mean 

(5 (5') I I’, 2) = @ fs’) I x’> = Tit (2.8) 

This approximation is called "quasi-crystalline" /6/. 
The solution of the equation obtained here for 3 j.s examined 
Let X, be a set of Xfrom which points incident in s1 or in 

in /5/. 
xpare removed. If 

then because of the definition (1.5) of the function X (;z,; 1') , the following equation holds: 

x (s,; .z‘) = x fz,, r,; s‘) + s (I' - a+), 2, E x (2.9) 

Let us examine the conditional mean under the integral in (2.2). Taking into account 
the preceding relationship, we have 

<PO (;E')'X (z,; 2’) B fz') a&*) 1 x1,; rJ = (Z*lO) 

<PO W) 5 (3') E (s*) X (r1, r,; 2') III; Is> i- 
6 (x' - sz) <PO (5%) 5 (ra) E (51) I r1; @ 

Using now hy_Dothesis Ha and an assumption of the type (2.8) 

<ii (z') 5 (se) I z’, s,; a$ = @(x1) ~(*,) I s’; tg) = iia (2’ - 2,) (2.11) 

the expresions for each of the means on the right side of (2.10) can be represented in the 

fOXXll 

<PO @'I x 6% z,; x'f 5 Id) 3 ftg) 12,; e = P <x (z,, s,; 2’) Ix,; XJ afir’ - z$} (2.12) 

<PO (4 3 (4 ii: k%) I 21; & = PI? (2% - & p = <P, (I) I 5) (2.13) 

It is assumed here that the random functions P,(~)and X(r) axe statistically independent. 
Substituting the preceding expressions into (2.10), and the xeoult into (2.2)‘ we obtain 

the final expression fox at(x): 

Using hyPothesis ri, and an assumption analogous to (2.8) and fZ.ll), the mean under the 
integral in (2.4) can be represented in the form 

<PO fx') 5 W) X frz; 8') I=,; 2%) =.P@(r’ - q) F (Z’$ 21, tp} -i- 6 (I’ - 2s) w,& - a& 
Substituting this result into (2.4), we have 

@(r,-rzz) =~o+s(z,--QJp@(x~ -21) +Ss(2,--23p)Q)(~'--zg)P(z),q,22)& 

Transforming the right side of (2.7) in an analogous manner, we can obtain 

(2.161 

D @l -~s)=~oa)(~l--~~~~S~l--3Piia(~*-~~8)$.S(~~-2~)PijB(2’ -x~~P(2’,21*x$dx (2.17) 

Equations (2.14), (2.16) and (2.17) form a closed system in the three desired functions 
ii'@),@(r) and D(r). The specific structure of therandom setX occurs in these equations in 

terms of the function ~F(s',xl, &defined by relation (2.15). 
in greater detail. 

We consider the mean Fix',+ z$) 
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3. Certain conditional means of the random functionsX:(s)and Y(x,;x)~ we 
initially consider means of the form (X (2%; 5) I rl> and {X (s,; z) I s,; x2). By definition of 
the conditional means, we have /7/ 

(3-i) 

(3.2) 

The setxis later assumed to be ergo&&. The standard method that will be utilized to 
construct mans of tixe types (3.1) and (3.21 is to apply the ergodic property and then take 
the average over the ensemble if necessary. For instance, starting from definition (1.1) of 
the function X(z),we have 

1 
(X(5)) -lim, 

v--1, !Z 
S(z-&)az=$ (3.3) 

v EJEV 

Here V is a domain in Rathat occupies all space in tbe limit, vis its volume, and ug 
is the mean volume per element of the set X (one defect). 

We evaluate the two-point moment of the function X(x). Using the ergodicity property, 
we obtain 

We introduce the random vector Eit = Er - %I, and let its distribution density be glj(x). 
We take the average of relation (3.4) once again over the ensemble of samples X. The above 
mentioned mean of the separate components in the last sum has the form 

(~@l'-%fjJ>-S 6(x1 -%~Bfj@&=gfj(~l)* i+j 
(6 (Xl - tj)> =s 6 (xl)s isj 

It is here taken into account that &, aa 0. 
Extractingthecompcnents with i-_j in (3.4), we obtain 

(3.5) 

where N is the number of points incident in the domain V. 
Using this result and the obvious equality 

x (2) = x (s,; z) + 6 (2 - z,), 51 E x 

we find the expression for the mean in the numerator (3.1) 

N 

Let us consider the example of a random point set homogeneous in space. Let its ele- 

ments &be random vectors of the form Em= m +p,,,+r, where m is the vector of the m-th node 

of a regular lattice fixed in space, pm are independent random vectors with zero expectations 

and the same characteristic function f(k), and r is a random vector distributed uniformly in 
all space that is identical for all m. 

We introduce the function 

I 
s@)=(,,r s f (k) f (-k) #-) dk (k.z = k=l,) 

The functions g,,,,,(z) in (3.6) are related to the function g(r) for the point set under 
consideration by the relationship 

g,* (z) = g (2 - m-l- a) (3.7). 

It EoLlows from (3.6) and (3.3) that the expression for the mean (3.1) will here have 
the form 
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(X @I; 4 121) = 3’ g (2 - y -m) 
m 

wherethe:prime on the summation sign denotes that the component m= 0 has been omitted. 
We will now constructthemean in the numerator (3.2). Using the ergodic property, we 

We take the average of (3.8) once again over the ensemble of samples X. Since &ji and E&i 
for j /k are independent random vectors, their joint distribution function is &‘li (2) Bki (2). 

The means of the separate components of the last sum in (3.8) have the form 

tb (zI - 5j,) b (~ - E,,)) = 

I 

tfJi (2s) Bk3 (5) when I # k 
~b--dgJi kd when i =k 

Hence, we obtain an expression forthe mean (3.2) from (3.6)-(3.8) in the form 
tx (q; I) I q; 2,) = F (&Zl, 4 + 6 (I - 23 

Equation (2.9) is used here. The function P is defined by relation (2.15) and in this 
case has the form 

where the prime on the summation sign denotes that the component m -O(II= 0) has been omitted. 

4. The one-dimensional case. We will consider the solution of the system of 
equations (2.141, (2.16) and (2.17) using the example of the plane problem for a system of 
point defects located on a line L. Let such defects model a system of rectilinear slits 
(cracks) of random length 21 lying on L. The coordinates of the centres of the slits form a 
homogeneous ran&n set. We shall consider the exernal stress field to be a uniaxial tension 
in the direction of the normal n to the line of slits and to have the form u@ = a,n%b, where 
u0 is a scalar. 

We note that the state of any defect is determined uniquely in this case by the normal 
field component 5, where it follows from symmetryconsiderationsthat Z@(x) ng = T(z)na, where 
i?(z) is a scalar. 

In the case of an isotropic medium the tensors P,p,, and r&w (3) n,, take the form (x 
is the coordinate along L) 

P w4 = (i--u) 2nbo nJ$.n,, 
P 

n&7- (x) n fi-.&jf* 

where p is the shear modulus , Y is Poisson's ratio of the medium, &b is the Kronecker delta, 
and x-' is a generalized functions whose Fourier transform is --xlkl /W. 

Multiplying (2.14), (2.16) and (2.18) ontheleft and right by the normal n and taking 
account of the preceding relationships, we arrive at the system of equations L'= +>) 

~(z)=l7&qx)+-$-D(z)+@ s P(x~,x,O)zi"(d).+.+ (4.1) 
-m 

D(t)- u@(x) + $3’(z) + b’ 5 F(x’, x, O)?(z'- z) /& 
-0D 

@(x)=u*++q~)+~ T F(x',x,O)@(d)~ 
-0 

in the three scalar functions 

52 (5) = <Ci (z)ii (0) 12; o>, D (4 = <ii (4 iT (x) I x; o>, @ (x) = e (3 I 2; o> (4.2) 
If the defect density tends to zero, the integral terms vanish in these equations and 

they describe the interaction of two isolated point inhomogeneities. Here the solution of 
system (4.1) will have the form 

F (x) = D (x) = [a, (x)]‘, 0 (z) = %I g& (4.3) 
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The expression for (o(X)is the normal component of the stress field in which each of the 
twc~ identical point defects separated by a distance x are stituated /5/. For ,z< & solutjon 

(4.3) has no physical meaning. 
ft is pointed out in /5/ that a point set in which the defects can turn out to be Located 

arbitrarily close to each other has no adequate analog in the case of defects of finite size. 
Hence, t0 obtain physically incontrovertible results a constraint must be introduced on the 
possibility of the defects comFng together in a random set X. In the case under consideration, 
for i.XIS~~e, the CSntres of the cracks which the point defects simulate should not approach 
each other a distance less than the sum of half their lengths in order not to merge. This 
circumstance can be taken into account partially if the foU.owing stochastic model of a one- 
dimensional point set is used. 

Let xr be the coordinate of the k-th defect, and let the differences z~,.~ - q be lndep- 
endent random variables for all k, having the very same normal distribution 

f(z)=+erP [-(*I (4.4) 

Here 1,is the mean distance between defects, and za is the variance. If z +O we obtain 
a regular chain of defects. In order to limit the probability of the defects coming together 
we assume r to be fairly small. Since the quantity having the distribution (4.4) with unit 
probability in practice lies in the interval (I, - 32, E, + 321, we will assume x = zll, < l/a. 

Sy using the method utilized in Sect.3, it can be shown that the function F (I', "r. 1%) 
in the integrand of system (4.1) has a form analogous to (3.9) inthis case 

(4.5) 

(4.6) 
(the prime on the summatign sign denotes that the component k = 0 has been omitted,and the 
double prime denotes that the components n = 0 and n -= k have been omitted). 

Substituting this expression for F into system (4.1), we seek its dolution in the form 

a(s)=Wr)(&j', O(s).- 4(4 ( .*2p** 1" 
(4.71 

@@)=@1(s)& 

This form of the structure of the solution is dictated by the following considerations. 
The functions $1, D and @characterise pairwfse interaction in a random set of point defects. 
To a first approximation it can be considered that their form agrees with the corresponding 
form for two isolated defects (4.3), while the presence of the surrounding point inhomogeneit- 
ies is reduced to a change in the external field in which these two defects are situated. 
Hence, we immediately arrive at representation (4.7). 

-erical computations show that the functions G(s), D,(r) and @,,(z)are approximated well 
by constants whose values depend on the parameters p = 26/l, and X. We denote these constants, 

respectively, by &.*@,x), D, @, x) and a_@,%), where it can be shown that &,* = @Dg))2* 

Curves of @,@,x) and Dm(p,x) - @_2(p,~) are shown in Figs.1 and 2. The values 

P = 1, 0.8, 0.6, 0.4 correspond to curves 1-d. 

0.8 

0.4 

a 

Fig.1 Fig.2 Fig.3 
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Since @_= 81 by virtue of (2.6), the mean value of the field s(r).is a maximum for a 
fairly high relative variance of the distance between the defects (x= 0,3- 0.4), as is seen 
from Fig.1. For x = 0.i - 0.2 the quantity 81 already agrees with the value corresponding to 
a regular chain of defects (x=0). 

The difference Ii, -f@_)" equals the variance of the field 5. It follows from Fig.2 

that the variance is a maximum for x=0.2- 0.25 and is practically zero for x<O,i, which 

corresponds to a regular structure. For x>V8 the quantity D,- (CD,) becomes negative. 

This meaningless physical result is due to the increase in the probability of the defects 
coming together at distances less than b for large x. 

As is seen from (4.7) for P(z), the correlation radius of the effective field x(z) is of 
the order of the average linear dimension bof the defect and depends slightly on the relative 
variance of the distance xp between defects. 

5. Correlation Function of the Elastic Stress Field. TO evaluate the second 

moment of the Stress fields in a medium with point defects, we multiply, as tensors, the 
expression for o(2) taken at the difference points x1 and 2%. Taking the average of 
the result over the ensemble of the set X, we obtain 

(*a (21) c+ (%a)> = u$Jp + s s”“p (xx - 23 (PwpTb (x’) a36 (23 x (id)) dz’cFp + (5.1) 

00 Or8 SWTb(zl S -z')(Po,ayp (z')?P (2')X(2'),dz' + S S"@y(2, -z')dz'Ss*~(21 -27 x 
(Povppp(2')P~(~'~~(2')~~(~~)X (2')X (if)) dz" 

Taking hypothesis H2 into account, we represent the mean under the integrals in this 
relationship in the form 

<PC (s')a(z') x (5')) =i Pa” (5.21 

0% (23 Pa (23 z (2’) 5 @9 x (‘2’) x (23) = 

(X (2”; 5’) x (s’)) PC* (z’ - z”) P -+- - 2) <PO9 & 

It is here taken into account that two different defects cannot be at the very same paint. 
Hence, for x" = 2' we have 

@ (s'fi? (t") 1 z’, 23 - @(z’)ij (2’) 1 I’> = f), 

Substiuting (5.2) into (5.1) and taking into account that the operator S is 
by constants /4/, we obtain 

annihilated 

(5.3) 

Therefore, the second statistical moment of the stress field is expressed in terms of 
conditional moments of the function a(z), which is the solution of the system (2.14), (2.16), 
(2.17). The expression for the second moment of the strain field e(z) can be represented in 
a form analogous to (5.3 1. 

We now consider a one-dimensional set of point defects. We calculate the second mcmxent 
t(x) of the normal component of the stress tensor when the point x is on the line of defects 

t(s)- QJ,.(s)Qtln(W* %*(s)==%z@@(z)s~ 
The expression for the function t(z)in the form 

t(x)=uo~++n(.Z)Dar+zO 1 n(t-z’)3)(r??(d)dx’ (5.4) 
-0 

follows from relation (5.21, where-the function Za(s)has the form (4.7) and q(r)takes the 
following form 

for the model of a point set considered in Sect.4. 
Here h(s) is given by (4.6). 
The function x(z)is the analog of n(s)in (5.31, and has the following form in this case: 
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Hence, and from (5.4), we finally obtain 

A graph of the continuous part of the function t(t)- a$ is shown in Fig.3. The pres- 
ence of a*singufar component and a singularity at z== b in the correlation function of the 
xandom field %,,(i) on tbe line of defects is due to the replacament of the real cracks by 
point defects. Par a random field of,inbc.mogeneitfes of finite size the correlation function 
should be smooth, bounded, and have minimal correlation radius of the order of the mean size 
of the defect. As a random field of defects approaches a mgular lattice, the correlation 
radius of the stress field grows , as is also ssen from Pig.3 (the physically meaningless 
domain r< 6 is not shown in Fig.3). 
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L.S. SHUBSHCHIK 

The influence of small geometric imperfections of the shape of the middle 
surface on the non-axisymwetric buckling and initial post-critical Qehaviour 
of shallow elastic spherical shells is investigated for a uniform external 
pressure. 

Cases are coasidered when the least bifurcation load of non-axisymmetric buckling pa of 
the corresponding ideal shelf /l/ is a double eigenvalue of the linearized problem, i.e., 
buckling in two eigen modes occurs. Surfaces of values of the upper critical load as a 
function of imperfection functionals are constructed by using matrix pivotal condensation /l 
-71 and alignment f8-lo/ metbods for shells with a closed framed edge for A= 6.8 and 9, 
with a free clamped edge for A== 8.045, and with a fixed binge-supported edge for b = 5,655 

and n-co, where the parameter is' A = 2f3ft -+)t"*(s/k)"~, and His the height of the shell 
rise, h is its thickness, and v is Poisson's ratio. 
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